
Q2WDBotSimV3.1 Full Help

Table of Contents

Overview

Program Panes and Preferences

Code Pane

Preferences

Edit/View

Variables Pane and Edit/Track Variable Window

PlayField Pane

Pivot And Throw PlayField

Seek And Score PlayField

Bot Information and Modelling

Dimensions:

Wheel Motors:

Servo Motors:

Sensors:

IR Receiver
VEX Bumper Switches
Yellow Pushbutton Switch
Wheel Encoders
LFM Line Tracker
IR Ranger
Grip Force

Attaching Pins to Motors and Sensors

The Uno Pins WIndow

Communications with the Bot

Infrared Communication from Beacons to the Bot

BlueTooth Communications with the Bot

Menus

File menu commands:

Load INO or PDE Prog (ctrl-L)
Edit/View (ctrl-E)
Save (ctrl-S)
Save As
Next (#include) file
Previous
Exit

PlayField menu commands:

Pivot and Throw
Seek and Score

Find menu commands:

Ascend Call Stack
Descend Call Stack
Set Search Text (ctrl-F)
Find Next Text
Find Previous Text

Execute menu commands:

Step Into (F2)
Step Over (F4)
Step Out Of
Run To
Run
Halt
Reset
Animate
Slow Motion

Help menu commands:

Quick Help File
Full Help File
Bug Fixes
Change/Improvements
About

Options menu commands:

Skip through Structors/Operators
Register-Allocation Modelling
Error on Uninitialized
Artificial loop() Delay
Auto Beacons
Allow Nested Interrupts

Configure menu commands:

Wire Up PIns
Preferences
Wheel Speed Mismatch

VarUpdates menu commands:

Allow Auto (-) Collapse
Minimal
Highlight Changes

Windows menu commands:

BT Monitor
'Uno' Pins
Restore All
Prompt
Digital Waveforms
Analog Waveform

Timing and Sound Modelling

Intro

Timing

Sounds modelling

Limitations and Unsupported Elements

Included Files
Dynamic Memory allocations and RAM
'Flash' Memory Allocations
'String' Variables
Arduino Libraries
Pointers
'class' and 'struct' Objects
Scope
Qualifiers 'unsigned', 'const', 'volatile', 'static'
Compiler Directives
Arduino-language elements
C/C++-language elements
Function Templates
Real-Time Emulation

Release Notes

Bug Fixes

V3.1 June 2021 – Frirst Release
Changes/Improvements

V3.1 – June 2021 Furst Release

Overview

Q2WDBotSim is a real-time (see Modelling for Timing restrictions) simulator tool that I developed for the student in second
year Electrical & Computer Engineering. It is designed to allow you to experiment with, and to easily debug, Q2WD-Bot
targetted Arduino programs without the need for access to the actual physical robot. It allows you to choose your Uno
board's pin connections to the 2WD Bot's sensors, servos, and drive wheel otors, and to test the resulting Bot behaviour in
the PlayField Pane's virtual environments.

Q2WDBotSim provides simple error messages for any parse or execution errors it encounters, and allows debugging with
Reset, Run, Run-To, Run-Till Halt, and flexible Stepping in the Code Pane, with a simultaneous view of all global and
currently-active local variables, arrays, and objects in the Variables Pane. Run-time array-bounds checking is provided, and
'Uno' RAM overflow will be detected (and the culprit program line highlighted!).

When an INO or PDE program file is opened, it is loaded into the program Code Pane. The program is then parsed, and
"compiled" into a tokenized executable which is then ready for simulated execution (unlike Arduino.exe, a standalone binary
executable is not created) Any parse error is detected and flagged by highlighting the line that failed to parse, and reporting
the error on the Status Bar at the very bottom of the Q2WDBotSim application window. An Edit/View window can be opened
to allow you to see and edit a syntax-highlighted version of your user program. Errors during simulated execution (such as
mis-matched baud rates) are reported on the Status bar, and via a pop-up MessageBox.

Q2WDBotSim V3.1 includes a substantially complete implementation of the Arduino Programming Language V1.8.8 as
documented at arduino.cc.'s Language Reference web page, and with additions as noted in the version's Download page
Release Notes. Although Q2WDBotSim does not support the full C++ implementation that Arduino.exe's underlying GNU
compiler does, it is likely that only the most advanced programmers would find that some C/C++ element they wish to use is
missing (and of course there are always simple coding work-arounds for such missing features). In general, I have supported
only what I feel are the most useful C/C++ Arduino features for your courses -- for example, enum's and #define's are
supported, but function-pointers are not. Even though user-defined objects (classes and structs) and (most) operator-
overloads are supported, multiple-inheritance is not.

Because Q2WDBotSim is a high-level-language simulator, only C/C++ statements are supported; assembly language
statements are not. Similarly, because it is not a low-level machine simulation, 'Uno'328 registers are not accessible to your
program for either reading or writing.

Q2WDBotSim has built-in automatic support for a limited subset of the Arduino provided libraries, including :Servo.h,
SoftwareSerial.h, and EEPROM.h, as no other libraries are needed (or even useful) with this robot. For any #include'd
user-created libraries, Q2WDBotSim will not search the usual Arduino installation directory structure to locate the library;
instead you need to copy the corresponding header (.h) and source (.cpp) file to the same directory as the program file that
your are working on (subject of course to the limitation that the contents of any #include'd file(s) must be fully
understandable to Q2WDBotSim's parser).

I developed Q2WDBotSim in QtCreator and it is currently only available for WindowsTM.. Q2WDBotSim has been tested
reasonably extensively, but there are bound to be a few bugs still hiding in there. If you would like to report a bug, please
describe it (briefly) in an email to q2wdbotsim@gmail.com and be sure to attach your full-bug-causing-program Arduino
source code so I can replicate the bug and fix it.

Cheers,
Stan Simmons, Ph.D, P.Eng.
Associate Professor (retired)
Department of Electrical and Computer Engineering
Queen's University
Kingston, Ontario, Canada
June 2021

http://www.arduino.cc/

Program Panes and Preferences

Code Pane

The Code Pane displays your user program, and green highlighting tracks its execution. (or highlights red for an error)

After a loaded program has a successful Parse, the first line in 'main()' is highlighted, and the program is ready for
execution. Note that 'main()' is implicitly added by Arduino (and by UnoArduSim) and you do not include it as part of your
user program file. Execution is under control of the menu Execute, and its associated Tool-Bar buttons and function-key
shortcuts.

After stepping execution by one (or more) instructions (you
can use Tool-Bar buttons , , , or), the program line that will
be executed next is then highlighted in green – the green-
highlighted line is always the next line ready to be executed .

If program execution is currently halted, and you click in the
Code Pane window, the line you just clicked becomes
highlighted in dark olive (as shown in the picture) – the next-
to-be-executed line always stays highlighted in green (as of
V2.7). But you can cause execution to progress up to the line

you just clicked on by then clicking the Run-To Tool-Bar
button. This feature allows you to quickly and easily reach
specific lines in a program so that you could subsequently
step line by line over a program portion of interest.

If your loaded program has any '#include' files, you can
move between them by using File | Previous and File | Next

(with Tool-Bar buttons and). The last user-clicked
line in each of these modules remains highlighted, and
defines a possible breakpoint line to be run to, but only the
breakpoint in the currently displayed module is active at the next Run-To.

The Find menu actions allow you to EITHER find text in the Code Pane or Variables Pane (Tool-Bar buttons and , or

keyboard shortcuts up-arrow and down-arrow) after first using Find | Set Search text or Tool-Bar), OR

ALTERNATIVELY to navigate the call-stack in the Code Pane (Tool-Bar buttons and , or keyboard shortcuts up-
arrow and down-arrow). Keys PgDn and PgUp jump selection to the next/previous function..

Preferences

OptionsàPreferences allows users to set
program options and viewing preferences (that a
user will normally wish to adopt at he next
session). These can therefore be saved and
loaded from a myQ2WDPrefs.txt file that resides
in the same directory as the loaded program (
myQ2WDPrefs.txt is auto-loaded if it exists)

This dialog allows a choice between two mono-
spaced fonts and three typeface sizes, as well as
other miscellaneous user preferences.

Edit/View

By double-clicking on any line in the Code Pane (or using the menu File), an Edit/View window is opened to allow changes
to your program file – it opens with the currently selected line in the Code Pane highlighted.

This window has full edit
capability with dynamic syntax-
highlighting (different highlight
colours are used for C++
keywords, comments, etc.),.
There is optional bold syntax
highlighting, and automatic indent
level formatting (assuming you
have selected that using
Configure | Preferences). You
can also conveniently select built-
in function calls (or built-in
'#define' constants) to be
added into your program from the
provided list-box – just double-
click on the desired list-box item
to add it to your program at the
current caret position (function-
call variable types are just for
information and are stripped out to leave dummy placeholders when added to your program).

The window has Find (use ctrl-F) and Find/Replace capability (use ctrl-H). The Edit/View window has Undo (ctrl-Z), and
Redo (ctrl-Y) buttons (which appear automatically).

Use ALT-right-arrow to request auto-completion choices for built-in global variables, and for member variables and
functions.

To discard all changes you made since you first opened the program for editing, click the Cancel button. To accept the
current state, click the Accept button and the program automatically receives another Parse (and is downloaded to the 'Uno'
or 'Mega' if no errors are found) and the new status appears in the main UnoArduSim window Status-Bar.

A Compile (ctrl-R) button (plus an associated Parse Status message-box as seen in the image above) has been added to
allow testing of edits without needing to first close the window. A Save (ctrl-S) button has also been added as a shortcut
(equivalent to an Accept plus a later separate Save from the main window).

On either Cancel or Accept with no edits made, the Code Pane current line changes to become the last Edit/View caret
position, and you can use that feature to jump the Code Pane to a specific line (possibly to prepare to do a Run-To), You
can also use ctrl-PgDn and ctrl-PgUp to jump to the next (or previous) empty-line break in your program – this is useful for
quickly navigating up or down to significant locations (like empty lines between functions). You can also use ctrl-Home and
ctrl-End to jump to the program start, and end, respectively.

'Tab'-level automatic indent formatting is done when the window opens, if that option was set under Configure |
Preferences. You can redo that formatting at any time by clicking the Re-Format button (it is only enabled if you have
previously selected the automatic indentation Preference). You can also add or delete tabs yourself to a group of pre-
selected consecutive lines using the keyboard right-arrow or left-arrow keys – but automatic indentation Preference
must be off to avoid losing your own custom tab levels.

When Auto Semicolons is checked, pressing Enter to end a line automatically inserts the line-terminating semicolon.

And to help you better keep track of your contexts and braces, clicking on a '{' or '}' brace highlights all text between
that brace and its matching partner.

Variables Pane and Edit/Track Variable Window

The Variables Pane is located just below the Code Pane. It shows the current values for every user global and active (in-
scope) local variable/array/object in the loaded program. As your program execution moves between functions, the contents
change to reflect only those local variables accessible to the current function/scope, plus any user-declared globals.
Any variables declared as 'const' or as 'PROGMEM' (allocated to 'Flash' memory) have values that cannot change, and to
save space these are therefore not displayed.
'Servo' and 'SoftwareSerial' object
instances contain no useful values so are ,
similarly, not displayed.

You can find specified text with the Find menu

text-search commands (with Tool-Bar buttons

and , or keyboard shortcuts up-arrow and
down-arrow), after first using Find | Set Search

text or .

Arrays and objects are shown in either un-
expanded or expanded format, with either a trailing plus '(+)' or minus '(-)' sign, respectively. The symbol for an array
x shows as 'x[]'. To expand it to show all elements of the array, just single-click on 'x[](+)' in the Variables Pane. To
contract back to an un-expanded view, click on the 'x[](-)'. The un-expanded default for an object 'p1' shows as
'p1(+)' To expand it to show all members of that 'class' or 'struct' instance, single-click on 'p1(+)' in the
Variables Pane. To contract back to an un-expanded view, single click on 'p1(-)'.

If you single-click on any line to highlight it in dark olive (it can be simple variable, or the aggregate '(+)' or '(-)'
line of an array or object, or an single array element or object-member), then doing a Run-Till will cause execution to
resume and freeze at the next write-access anywhere inside that selected aggregate, or to that selected single variable
location.

When using Step or Run, updates to displayed variable values are made according to user settings made under the menu
VarRefresh – this allows a full range of behaviour from minimal periodic updates to full immediate updates. Reduced or
minimal updates are useful to reduce CPU load and may be needed to keep execution from falling behind real-time under
what would otherwise be excessive Variables Pane window update loads. When Animate is in effect, or if the Highlight
Changes menu option is selected, changes to the value of a variable during Run will result in its displayed value being
updated immediately, and it becomes highlighted in purple – this will cause the Variables Pane to scroll (if needed) to the
line that holds that variable, and execution will no longer be real-time!.

When execution freezes after Step, Run-To, Run-Till, or Run-then-Halt, the Variables Pane highlights in purple the
variable corresponding to the address location(s) that got modified (if any) by the very last instruction during that
execution (including by variable declaration initializations) . If that instruction completely filled an object or array, the parent
(+) or (-) line for that aggregate becomes highlighted. If, instead, the instruction modified a location that is currently visible,
then it becomes highlighted. But if the modified location(s) is(are) currently hiding inside an un-expanded array or object, that
aggregate parent line gets an italic font highlighting as a visual cue that something inside it was written to – clicking to
expand it will then cause its last modified element or member to become highlighted.

This window also gives you the ability to track any variable s value during execution, or to change its value in the
middle of (halted) program execution (to test what would be the effect of continuing on ahead with that new value). Halt
execution first, then left-double-click on the variable whose value you wish to
track or change. To simply monitor the value during program execution, you
leave the dialog open and then do Run, RunTo, RunTill, or one of the Step
commands – its value will be updated in Edit/Track according to the same
rules that govern updates in the Variables Pane. To change the variable's
value, fill in the right-hand Edit box, and Adopt the new value. Continue
program execution (using any of the Step or Run commands) to use that new
value from that point forward (you can Revert to the previous value if you
change your mind before then)

On program Load or Reset note that all un-initialized value-variables are reset to value 0, and all un-initialized pointer-
variables are reset to 0x0000.

PlayField Pane

The PlayField Pane shows the 2WDBot in one of two virtual environments – a Pivot and Throw play-field, or the goal scoring
competition Seek and Score play-field, depending on the user selection from the PlayField menu.

Pivot And Throw PlayField

This is a to-scale reproduction of the the real lab turntables, although in the simulator the turntable is flush with the floor.
The black tape strips can be can detected using the Q2WDBot's downward-looking reflective-infrared sensors. Bot motion
is constrained to pure left or right rotations due to a central holding pin.

To “offer” a ball to the Bot, left-click-and-hold with the mouse pointer between the gripper jaws (before your program
closes them). Hold the mouse left button down until the gripper grabs the ball, then release the mouse button (if you
release too soon, the ball is taken back). As long as you click close enough to the center of the gripper jaws, Q2WDBotSIm
will position the ball so that it can be gripped centered between the jaws, am and offset a bit toward the end of gripper
jaws (you can position the gripper iat any upward titl angle to accept a ball).

Your program you can send “commands” to the Bot by accepting a single character typing into the Bluetooth
communication “BT to 2WD” window Send-One edit box. Or your program can accept and interpret bumper-lever5 clicks
to command actions.

The task is to move to the desired rotational position (tape line) and then to “throw” the grasped ball as far as possible –
note that the ball can be thrown from the gripper using a combination of a rapid tilt-servo motion, with an appropriately-
timed opening of the gripper jaws -- the ball's flight path is modelled accurately, and subsequent motion displayed.

As an aid, Q2WDBotSim allows you to re-position the Bot using the mouse at any time:r ight-click anywhere ahead of the
Bot and hold and drag to rotate the Bot to any desired angle. You can also simulate bumper switch closures at any time
with a left-mouse-click. Click on the angled arm of the bumper switch to activate that bumper's contact sensor (and hold
down if you want to keep the touch sensor contact closed) . To activate both bumper contacts simultaneously, click roughly
half way between them.

Seek And Score PlayField

This is a to-scale reproduction of the the real lab competition playfield with walls, ball pick-up ledges and a goal mechanism.
The black-tape floor lines (coloured here instead as grey for contrast with the ledges) can be detected using the Q2WDBot's
downward-looking reflective-light sensors. Bot motion is
unconstrained except by the walls, ledges, and goal apparatus .

Relevant Dimensions:
• PlayField is a 48 inches by 48 inches square
• Floor surface is 46.5 inches square
• Ball ledges are 12 inches long by 1.5 inches wide
• Central vertical tape-line is 18 inches from left wall
• Top and bottom horizontal tape lines are 2 inches from

wall
• Goal vertical tape line is 5 inches from wall
• Balls are 1 inch (2.54 cm) in diameter
• Black-tape floor lines are 1.7 cm wide
• Top of a ball ledge is 1.25 cm below the gripper tilt-

servo pivot axis
• Goal cup lip is 3 cm above the gripper tilt-servo pivot

axis

To place a ball on one of the three pick-up ledges (and
simultaneously activate the transmission of the 2-LED infrared
homing beacon on the wall above it), left-click on that beacon
(the small grey object with two LED's centered above each ledge). When enabled (its Green LED is ON), a beacon transmits
its location at 300 baud (8N1) as the ASCII character value '0', '1', or '2' (corresponding to the top, left and bottom ledges,
respectively). The single-character transmission is repeated after an idle gap of 300 milliseconds (the Red LED falshaes on
an off to remind you that transmissions have gaps between them). If Options->Auto Beacons is chosen, the beacon will
automatically turn off its transmissions when the Bot (or the user via a mouse-click) picks up that beacon's ball.

The Bot must lower its gripper somewhat in order to be able to grasp a ledge ball, but lowering it too far will cause it the
gripper jaws to fail to clear the ledge lip on approach. A ledge ball is initially stationary in a shallow bowl just in front of its
beacon, but once contacted by the Bot gripper it will roll off the ledge if not successfully grasped, since the ledges have a
shallow downward slope.

The goal apparatus consists of a 4-inch diameter cup (an ABS plastic drain fitting) feeding a short vertical chute leading to a
collection-tube ramp. The Bot must raise its gripper to clear the lip of the goal cup.

 A ball hitting the floor will land there (without bouncing) and its horizontal velocity will then decay rapidly. You can “pick
up” any ball (once dropped by the gripper) by using the mouse (left-click, then release). You can then drop the picked up
ball it anywhere by moving it with the mouse and then using either a left-click or a right-click: a left-click drops the ball
from height; a right-click instead places the ball down onto the surface that is immediately below it (from which it may then
roll off). A ball released from the Bot's gripper (or from your hand) will fall under gravitational acceleration, maintaining it
current horizontal velocity until it strikes something. A ball striking a Bot surface or edge, or a ledge, or the goal edge, will
bounce off. For better visualization, a ball moving upward has a white outline, while a ball moving downward, or stationary,
has a black outline.

As an aid, Q2WDBotSim allows you to re-position the Bot using the mouse at any time: left click near the Bot's centre and
hold and drag to slide the Bot to the desired location; or right-click anywhere ahead of the Bot and hold and drag to rotate
the Bot to any desired angle. You can also simulate collisions on either bumper at any time with a left-mouse-click. Click on
the angled arm of the VEX bumper switch to activate that bumper's contact sensor (and hold down if you want to keep the
touch sensor contact closed) . To activate both bumper contacts simultaneously, click roughly half way between them.

Bot Information and Modelling

The Bot is based on the DFRobot 2WD robot kit (with pivot ball at the front)., with the addition of a 3-servo pan/tilt/gripper
mechanism. A photograph of the actual Bot is shown below:

Dimensions:

• Overall length = 23 cm (9 inches)
• Wheel base = 14 cm (5.5 inches)
• Wheel circumference = 20.5 cm (8 inches)
• Height of front bumpers = 4 cm (1.5

inches)
• Distance from wheel axes to front

bumpers = 14 cm (5.5 inches)
• Distance from wheel axes to gripper tilt-

servo pivot axis = 7 cm (2.75 inches)
• Gripper length (tilt-servo pivot axis to

tip) = 9 cm (3.5 inches)
• Distance from wheel axes to line-tracker

IR sensors = 12 cm (4.75 inches)
• Spacing gap between the three line-

tracker IR sensors (Left, Centre, Right) =
2 cm (0.75 inches)

• Height of gripper tilt axis above floor = 14.5 cm (5.7 inches)

Wheel Motors:
1) These are DC gear motors driven by a dual motor driver with each driver having DIR and PWM pins.
2) A HIGH on the driver DIR opin creates forward vehicle motion on that wheel's side
3) The PWM pin will only respond properly in Q2WDBotSIm to analogWrite() or tone() generated signals, not to

digitalWrite() "bit-banged" signals.
4) Maximum wheel rotation speed is about 1 revolution per second (at PWM duty cycle = 1.0, or 100% on-time)
5) These are high-inductance motors, and Arduino's 500 Hz analogWrite() signals is a bit too rapid for them. The

result is that at lower duty cycles (below about 40% on-time), motor torque (and so speed) is reduced below
expectations -- at duty-cycles less than about 20% on-time, the motors are almost stationary.

Servo Motors:
1) The three pan/tilt/gripper assembly servos are modelled after the HiTec -422 180-degree servo.
2) In Q2WDBotSIm the servo control pins only respond accurately to Servo.write() or

Servo.writeMicrosecond(), not to digitalWrite() "bit-banged" signals.
3) Maximum servo rotation speed is 60 degrees in 140 millseconds.
4) The pan servo is centered for a servo write()angle of 90 degrees.
5) The tilt servo is horizontal for a servo write()of 60 degrees,, and is maximally down-tilted at a write() angle of

0.
6) The gripper servo has the gripper jaws fully open for a servo write()angle of 30 degrees, and fully closed for a

servo write()angle of 180 degrees.

Sensors:

These are connected to the desired pin using the Config→Write Up Pins dialog, as described in the next section.

IR Receiver

The forward-looking IR receiver is a standard modulated IR receiver as used in remote controls. It detects infrared
transmissions from the three PlayField IR beacons, delivering a digital signal on its attached pin. This signal can be detected
as a 300 baud 8N1 signal using the provided QSerial library functions (or you can use SoftwareSerial if you prefer) -- see the
Infrared Communications from Beacons to the Bot section below.

VEX Bumper Switches

Each bumper sensor is a simple OPEN/CLOSED switch wired to a pull-up resistor to +5V to create a voltage that changes
as the sensor is depressed. The bumper can be attached to a pin and sensed using digitalRead(). In Q2WDBotSim the
switch is activated if it hits a wall or the goal collector tube, and you can also manually activate this sensor by clicking near it
with the left mouse button (and holding it down for as long as you wish). QWDBotSim assumes that you have wired your real
Bot so that when the VEX bumper switch closes, this will cause a LOW on the pin to which is is attached.

Alternatively, encoded bumpers can combine the two bumper switch closures into a single analog voltage. The four possible
switch combinations (CLOSED, CLOSED), (CLOSED, OPEN), (OPEN, CLOSED), (OPEN, OPEN) create corresponding
analog levels that are modelled as 0, 255, 511, 767 in Q2WDBotSim.

Yellow Pushbutton Switch

This sensor is a simple OPEN/CLOSED switch that you can wire up to create a voltage that changes as the pushbutton is
depressed. In Q2WDBotSim you can manually activate the pushbutton sensor by clicking on it with the left mouse button (and
holding it down for as long as you wish).

If the pushbutton switch is wired to a pin and sensed using digitalRead(), a push will create a logic LOW, else if un-
pressed it will create a logic HIGH.

Wheel Encoders

The wheel encoders have 10 teeth per revolution, which interrupt an infrared beam and so so will create 20 digital-level
changes per wheel revolution on the attached digital pin (every second change is from LOW to HIGH, and the others are
from HIGH to LOW).

LFM Line Tracker

The downward-looking LFM Line Tracker produces 3 analog output voltages from its three active reflective IR sensors. The
produced voltage when over a dark line is around 1.5 volts, and when over the lighter floor background, it is around 2.5 volts.
These levels are BOTH below the logic HIGH threshold for a digital input (which is closer to 3 volts), so we cannot
differentiate these as digital levels through digitalRead(). Instead we must read the levels using analogRead()

In Q2WDBotSim, the modelled analogRead() level is 600 over the lighter floor background. and 400 when over the dark
floor lines.

IR Ranger

This forward-looking IR range sensor measures distance and produces an analog voltage that is non-linear with range to the
wall in front of the Bot.. The output voltage is 0.4 volts at a range pf 80 cm, rises in an upward steepening curve until it
reaches a maximum of 2.6 volts at a range of 8 cm, and then starts to drop rapidly as the range decrease below 8 cm.

Grip Force

The grip force sensor measures ball contact force and produces a varying resistance. Q2WDBotSim assumes this sensor it
is wired to the attached pin as a pull-up resistor (whose value will change non-linearly with the grip-force encountered from a
maximum of about 500 K-ohms with no pressure to a minimum of about 1K-ohm at max grip force), with an attached fixed
pull-down resistor of 10 K-ohms. This yields a pin voltage that ranges from almost a full 5 volt HIGH to almost zero volts.

Attaching Pins to Motors and Sensors

The ConfigureàWire Up Pins menu item can be used to open a dialog to allow you to choose (several) of the sensor
connections to the available subset of the Bot's 'Uno' board's 20 pins (some pins are for fixed purposes, and these are in
black read-only boxes) . From this dialog
you can also Save Pins to a text file,
and/or Load Pins from a previously saved
(or edited) text file.

Bote that digital pins 0-13 are specified as
0-13 but analog pins 0-5 map to Uno pins
14-19.

The Uno Pins WIndow

This is a depiction of the pin levels on the microcontroller board during program execution. When you load a new program
into Q2WDBotSim, if it successfully parses it undergoes a "simulated download" to the'Uno' that mimics the way an actual
board behaves– you will see the levels on pins 0 and 1 toggling (pins 1 and 0 which are hard-wired for serial communication
with the Blietooth adaptor). This is immediately followed by a pin 13 flash that signifies board reset and Q2WDBotSim
automatic halt at the beginning of your loaded program's execution.The window allows you to visualize the digital logic levels
on all 20 'Uno' pins ('1' on red for HIGH, '0' on blue for LOW, and '?' on grey for an undefined indeterminate voltage), and
programmed directions ('I' for INPUT, "O" for OUTPUT). For pins that are being pulsed using PWM via analogWrite(), or
by Tone(), or by Servo.write(), the colour changes to purple and the displayed symbol becomes ' '̂.

Clicking on any of the pins can be done to open (or add to) either a Pin Digital Waveforms window or a Pin Analog
Waveform window as shown on the next page-- both display the past one-second's worth of activity on that pin, as
described below.

Left-clicking on any 'Uno' pin will open a Pin Digital Waveforms window that displays the past one-second's worth of
digital-level activity on that pin. You can click on other pins to add these to the Pin Digital Waveforms display (to a
maximum of 4 waveforms at any one time).

activate
 BLUE cursor

cursor backward-
to- edge (or use
L-arrow key)

cursor forward-
to-edge (or use
R-arrow key)

activate wave

delete wave

activate
 RED cursor

sense rising
 edges sense falling

 edges
click to page view left or right, or use keys Home, PgUp, PgDn, End

To ZOOM IN and ZOOM OUT (zoom is always centered on the ACTIVE cursor), use the mouse wheel, or keyboard
shortcuts CTRL-up_arrow and CTRL-down_arrow.

One of the displayed waveforms will be the active pin waveform, indicated by its "Pin number" button being shown as
depressed (for example Pin 6 is active in the above Pin Digital Waveforms screen capture). You can select a waveform by
clicking its Pin number button, and then select the edge-polarity of interest by clicking the appropriate rising/falling edge-

polarity selection button, , or , or by using the shortcut keys uparrow and downarrow.You can then jump-position the
active cursor (either blue or red cursor lines with their delta time shown) backward or forward to the chosen-polarity digital

edge of this active pin waveform by using the forward/backward-to-edge arrow buttons (, and , depending on
activated cursor), or the keyboard shortcuts leftarrow and rightarrow.

To activate a cursor, click its coloured activation button as shown above – this also jump-scrolls the view to that cursor's
current location. Alternatively, you can quickly alternate activation between cursors (with their respectively-centred views)
using the shortcut TAB key.
You can jump-position the currently activated cursor by left-clicking anywhere in the on-screen waveform view region.
Alternatively, you can select either the red or blue cursor line by clicking right on top of it (to activate it), then drag it to a new
location, and release. When a desired cursor is currently somewhere off-screen, you can right-click anywhere in the view to
jump it to that new on-screen location. If both cursors are already on-screen, right-clicking simply alternates between
activated cursor.

Doing instead a right-click on any 'Uno' pin opens a Pin Analog Waveform window that displays the past one-second's
worth of analog-level activity on that pin. Unlike the Pin Digital Waveforms window, you can only display one pin's worth of
analog activity at any one time.

You can jump-position blue or red cursor lines to the next rising or falling "slope point" by using the forward/backward arrow

buttons (, or , , again depending on activated cursor, or leftarrow or rightarrow) in concert with the rising/falling

slope selection buttons , (the "slope point" occurs where the analog voltage passes through the 'Uno' pin's high-digital-
logic-level threshold). Alternatively, you can again click-to-jump, or drag these cursor lines similar to their behaviour in the Pin
Digital Waveforms window

Communications with the Bot

Infrared Communication from Beacons to the Bot

The provided IR receiver sensor is tuned to 40 kHz infrared transmission of wavelength 900 nanometeres. This is the same
frequency and wavelength used by three infrared beacon transmitters located above the PlayField ball ledges. These three
beacons transmit ASCII value '0', '1', and '2'., respectively, and their data can be received using the SoftwareSerial
library's receive() function. The beacons transmit IR for a LOW, so data arrive non-inverted at the output of the Bot's
infrared receiver Declare your SoftwareSerial program object to use non-inverted reception (the default), and the
baud rate set by begin() must be 300 in order to match the baud rate of the beacons.

The beacons are activated/deactivated by single-clicking on them (the Green LED turns ON) and disabled by another
single-click. The Red LED flashes when the beacon is enabled as a reminder of the gaps between subsequent characters.

BlueTooth Communications with the Bot

The DFRobot Bluetooth module allows communication with an external Bluetooth
device over serial pins 0 and 1 . The BT Comm window does not allow a choice of
choice of baud rate – that is fixed at 115200 to match that of the real DFRobot
Bluetooth adaptor module.

Typing a character in its “Send One to 2WD” edit box causes it be transmitted
immediately at the chosen baud rate (assuming you program is running, and so
time is advancing).

 Characters transmitted in the BT Monitor window can be tested by
Serial.available() and read using Serial.read(),because the built-in
Serial object is associated with pins 0 and 1. In addition, you can call
Serial.flush() at any time to flush any characters from its system-controlled
receive queue.

Values returned by read() are the actual ASCII numeric byte codes. Although
lower-case letters are accepted in the “Send One to 2WD” edit box, only their capitalized versions are transmitted, and
only letter keys are allowed. You can only send at a (deliberately limited) maximum rate of about 3 characters each second (a
new character typed before waiting for an imposed 300 millisecond gap will be ignored). Any characters fully received on pin
0 but that have not yet been read by your program will appear in the “Unread by 2WD” edit box.

All characters received from the Bot, for example by Serial.print() or Serial.write() function calls are displayed in
the “Received from 2WD” edit box.

Menus

File menu commands:

Load INO or PDE Prog (ctrl -L) Allows the user to choose a program file having the selected extension.
The program is immediately parsed

Edit/View (ctrl- E) Opens the loaded program for viewing/editing.

Save (ctrl-S) Save the edited program contents back to the original program file.

Save As Save the edited program contents under a different file name.

Next (#include) file Advances the CodePane to display the next #include'd file

Previous Returns the CodePane display to the previous file

Exit Exits Q2WDBotSim.

PlayField menu commands:

Pivot and Throw Chooses the Bot mounted on a turntable with black tape lines.

Seek and Score Opens the Bot on the competition playfield with goal, ledges with infrared
beacons, and the ability to click a beacon to enable it and add a ball on its ledge.

Find menu commands:

Ascend Call Stack Jump to the previous caller function in the call-stack – the Variables
Pane will adjust to show that functions locals

Descend Call Stack Jump to the next called function in the call-stack – the Variables Pane
will adjust to show that functions locals

Set Search Text (ctrl- F) Activate toolbar Find edit box to define your next-to-be-searched-for text..

Find Next Text Jump to the next Text occurrence in the Code Pane (if it has the active
focus), or to the next Text occurrence in the Variables Pane (if instead it
has the active focus).

Find Previous Text Jump to the previous Text occurrence in the Code Pane (if it has the
active focus), or to the previous Text occurrence in the Variables Pane (if
instead it has the active focus).

Execute menu commands:

Step Into (F2) Steps execution forward by one instruction, or into a called function.

Step Over (F4) Steps execution forward by one instruction, or by one complete function call.

Step Out Of Advances execution by just enough to leave the current function.

Run To Runs the program, halting at the desired program line -- you must first click to highlight
a desired program line before using Run To.

Run Runs the program.

Halt Halts program execution (and freezes time).

Reset Resets the program (all value-variables are reset to value 0, and all pointer variables
are reset to 0x0000).

Animate Automatically steps consecutive program lines with added artificial delay and
highlighting of the current code line. Real-time operation and sounds are lost.

Slow Motion Slows time by a factor of 10.

Help menu commands:

Quick Help File Opens the Q2WDBotSim_QuickHelp PDF file.

Full Help File Opens the Q2WDBotSim_FullHelp PDF file.

Bug Fixes View significant bug fixes since the previous release..

Change/Improvements View significant changes and improvements since the previous release.

About Displays version, copyright.

Options menu commands:

Skip through
Structors/Operators

While stepping, do not not stop execution inside a con/de/sturctor function, or inside an
operator function.

Register-Allocation
Modelling

Model how the real Arduino compiler would allocate variables between registers and
the stack.

Error on Uninitialized Flag as a Parse error anywhere your program attempts to use a variable without having
first initialized its value.

Artificial loop() Delay Adds 1 millisecond of delay every time loop() is called (in case there are no other
program delay()'s anywhere).

Auto Beacons If chosen, beacons will automatically stop their transmission when the Bot picks up the
ball on their ledge.

Allow Nested Interrupts Allow interrupts() to be called inside a user interrupt routine (to re-nable interrrupts
inside that routine).

Configure menu commands:

Wire Up PIns Opens a dialog to allow you to set on which pins you will attach sensors (that allow
such freedom of choice – many are on fixed pins) which should match the real-life
hardware connections you have chosen on your Bot. From this dialog you can also
Save pin connections to a text file, and/or Load connections from a previously
saved (or edited) text file.

Preferences Set compilation, text size, and other preferences which will be automatically saved
into file myQ2WDPrefs.txt . That preferences in this file are automatically
loaded at each launch of Q2WDBotSim.

Wheel Speed Mismatch Opens a dialog to allow you to model real-world differences in the speed response
of your Bot;s left and right motors (real-world motors are always slightly different).

VarUpdates menu commands:

Allow Auto (-) Collapse Allow Q2WDBotSim to collapse displayed expanded arrays/structs/objects when
falling behind real-time.

Minimal Only refresh the variables Pane display 4 times per second.

Highlight Changes Highlight the last-changed variable value (can cause slowdown).

Windows menu commands:

BT Monitor Restores (if minimized) the BT monitor window for communication through 'Uno'
pins 0 and 1 when the Bluetooth adaptor is connected on your Bot.

'Uno' Pins Restores (if minimized) the 'Uno' Pinsr window thatshows pin activity on all 20 pins.

Restore All Restores all minimized windows.

Prompt To left-Click or Right-Click an 'Uno' Pin to create a Waveform window:

Digital Waveforms Restore a minimized Pin Digital Waveforms window.

Analog Waveform Restore a minimized Pin Analog Waveform window.

Timing and Sound Modelling

Intro

The 'Uno' pins and attached sensors and motors are all modelled electrically, and you will be able to get a good idea at home
of how your programs will behave with the actual hardware.
.

Timing

Q2WDBotSim executes rapidly enough on a PC or tablet that it can (in the majority of cases) model program actions in real-
time, but only if your program incorporates at least some small delay() calls or other calls that will naturally keep it
sync'd to real time (see below).

To accomplish this, Q2WDBotSim makes use of a Windows callback timer function, which allows it to keep accurate track of
real-time. The execution of a number of program instructions is simulated during one timer slice, and instructions that require
longer execution (like calls to delay()) may need to use multiple timer slices. Each iteration of the callback timer function
corrects system time using the system hardware clock so that program execution is constantly adjusted to keep in lock-step
with real-time. The only times execution rate must fall behind real-time is most often when the user has tight loops with no
added delay.or that makes very frequent changes to variables values in a tight loop (causing a Variables Pane update
overload). In addition, programs with large arrays being displayed, or having tight loops with no added delay can cause a
high function call frequency and generate a high Variables Pane display update load causing it to fall behind real-time– this
can be circumvented by allowing update reduction s in the VarUpdates menu, or by selecting Minimal Updates there when
necessary. Any computational overload is compensated for by skipping some timer intervals to compensate, and this would
slow down program progression to below real-time.

Accurately modelling the sub-millisecond execution time for each program instruction or operation is not done – only very
rough estimates for most have been adopted for simulation purposes. However, the timing of delay(), and
delayMicroseconds() functions, and functions millis() and micros() are all perfectly accurate, and as long as
you use at least one of the delay functions in a loop somewhere in your program, or you use a function that naturally ties
itself to real-time operation (like print() which is tied to the chosen baud rate), then your program's simulated
performance will be very close to real-time (again, barring excessive user-allowed Variables updates which could slow it
down).

In order to see the effect of individual program instructions when running, it may be desirable to be able to slow things down.
A time-slowdown factor of 10 can be set by the user under the Options menu.

Sounds modelling

The PIEZO device produces sound corresponding to the electrical level changes occurring on the attached pin, regardless of
the source of such changes. Q2WDBotSim starts and stops an associated sound buffer as execution is started/halted to keep
the sound buffer synchronized to program execution.

Limitations and Unsupported Elements

Included Files

A '< >' - bracketed '#include' of '<Servo.h>', '<SoftwareSerial.h>', and '<EEPROM.h>' is supported but
these are only emulated – the actual files are not searched for; instead their functionality is directly "built into" Q2WDBotSim,
and are valid for the fixed supported Arduino version.

Any quoted '#include' (for example of “supp.ino" , "myutil.cpp", or "mylib.h") is supported, but all such files
must reside in the same directory as the parent program file that contains their '#include' (there is no searching
done into other directories). The '#include' feature can be useful for minimizing the amount of program code shown in the
Code Pane at any one time. Header files with '#include' (i.e. those having a ".h" extension) will additionally cause the
simulator to attempt including the same-named file having a ".cpp" extension (if it also exists in the directory of the parent
program).

Dynamic Memory allocations and RAM

Operators 'new' and 'delete' are supported, as are native Arduino 'String' objects, but not direct calls to
'malloc()' , 'realloc()' and 'free()' that these rely on.

Excessive RAM use for variable declarations is flagged at Parse time, and RAM memory overflow is flagged during program
execution. An item on menu Options allows you to emulate the normal ATmega register allocation as would be done by the
AVR compiler, or to model an alternate compilation scheme that uses the stack only (as a safety option in case a bug pops
up in my register allocation modeling). If you were to use a pointer to look at stack contents, it should accurately reflect what
would appear in an actual hardware implementation.

'Flash' Memory Allocations

'Flash' memory 'byte', 'int' and 'float' variables/arrays and their corresponding read-access functions are supported.

Any 'F()' function call ('Flash' -macro) of any literal string is supported, but the only supported 'Flash' -memory string
direct-access functions are 'strcpy_P()' and 'memcpy_P()', so to use other functions you will need to first copy the
'Flash' string to a normal RAM 'String' variable, and then work with that RAM 'String'. When you use the
'PROGMEM' variable-modifier keyword, it must appear in front of the variable name, and that variable must also be
declared as 'const'.

'String' Variables

The native 'String' library is almost completely supported with a few very (and minor) exceptions .

The 'String' operators supported are +, +=, <, <=, >, >= , == , != , and []. Note that: 'concat()' takes a
single argument which is the 'String', or 'char', or 'int' to be appended to the original 'String' object, not two
arguments as is mistakenly stated on the Arduino Reference web pages).

Arduino Libraries

Only 'SoftwareSerial.h', 'Servo.h', and 'EEPROM.h' for the Arduino V1.8.8 release are supported in
Q2WDBotSim . Trying to '#include' the “.cpp” and “.h” files of other as-yet unsupported libraries will not work as they
will contain low-level assembly instructions and unsupported directives and unrecognized files!

Pointers

Pointers to simple types, arrays, or objects are all supported. A pointer may be equated to an array of the same type (e.g.
'iptr = intarray'), but then there would be no subsequent arrays bounds checking on an expression like
'iptr[index]'.

Functions can return pointers, or 'const' pointers, but any subsequent level of 'const' on the returned pointer is ignored.

There is no support for function calls being made through user-declared function-pointers.

'class' and 'struct' Objects

Although poly-morphism, and inheritance (to any depth), is supported, a 'class' or 'struct' can only be defined to have
at most one base 'class' (i.e. multiple-inheritance is not supported). Base- 'class' constructor initialization calls (via colon
notation) in constructor declaration lines are supported, but not member-initializations using that same colon notation. This
means that objects that contain 'const' non- 'static' variables, or reference-type variables, are not supported (those are
only possible with specified construction-time member-initializations)

Copy-assignment operator overloads are supported along with move-constructors and move-assignments, but user-defined
object-conversion ("type-cast") functions are not supported.

Scope

There is no support for the 'using' keyword, or for 'namespace', or for 'file' scope. All non-local declarations are by
implementation assumed to be global.

Any 'typedef', 'struct', or 'class' definition (i.e. that may be used for future declarations), must be made global
scope (local definitions of such items inside a function are not supported).

Qualifiers 'unsigned', 'const', 'volatile', 'static'
The 'unsigned' prefix works in all the normal legal contexts. The 'const' keyword, when used, must precede the
variable name or function name or 'typedef' name that is being declared – placing it after the name will cause a Parse
error. For function declarations, only pointer-returning functions can have 'const' appear in their declaration.

All Q2WDBotSim variables are 'volatile' by implementation, so the 'volatile' keyword is simply ignored in all
variable declarations. Functions are not allowed to be declared 'volatile', nor are function-call arguments.

The 'static' keyword is allowed for normal variables, and for object members and member-functions, but is explicitly
disallowed for object instances themselves ('class' / 'struct'), for non-member functions, and for all function
arguments.

Compiler Directives

'#include' and regular '#define' are both supported, but not function-macro '#define'. As of V2.9, conditional
compilation is supported via the '#ifdef', '#ifndef', '#else' , and '#endif' directives (but not '#if' or
'#elif') – nesting of these directives is also not supported. The directives '#pragma', 'template',.
'#line', '#error' and predefined macros (like '_LINE_', ' _FILE_',' _DATE_', and ' _TIME_') are also not
supported.

Arduino-language elements

All native Arduino language elements are supported with the exception of the dubious 'goto' instruction (the only
reasonable use for it I can think of would be as a jump (to a bail-out and safe shutdown endless-loop) in the event of an error
condition that your program cannot otherwise deal with)

C/C++-language elements

Bit-saving "bit-field qualifiers" for members in structure definitions are not supported.

'union' is not supported.

The oddball "comma operator" is not supported (so you cannot perform several expressions separated by commas when
only a single expression is normally expected, for example in 'while()' and 'for(; ;)' constructs).

Function Templates
User-defined functions that use the keyword "template" to allow it to accept arguments of "generic" type are not supported.

Real-Time Emulation

As noted above, execution times of the many different individual possible Arduino program instructions are not modeled
accurately, so that in order to run at a real-time rate your program will need some sort of dominating 'delay()' instruction
(at least once per 'loop()'), or an instruction that is naturally synchronized to real-time pin-level changes (such as,
'pulseIn()', 'shiftIn()', 'Serial.read()', 'Serial.print()', 'Serial.flush()' etc.).

See Timing and Sounds above for more detail on limitations.

Release Note s

Bug Fixes

V3.1 June 2021 – Frirst Release

Changes/Improvements

V3.1 – June 2021 Furst Release

	Overview
	Program Panes and Preferences
	Code Pane
	Preferences
	Edit/View

	Variables Pane and Edit/Track Variable Window
	PlayField Pane
	Pivot And Throw PlayField
	Seek And Score PlayField

	Bot Information and Modelling
	Dimensions:
	Wheel Motors:
	Servo Motors:
	Sensors:
	IR Receiver
	VEX Bumper Switches
	Yellow Pushbutton Switch
	Wheel Encoders
	LFM Line Tracker
	IR Ranger
	Grip Force

	Attaching Pins to Motors and Sensors

	The Uno Pins WIndow
	Communications with the Bot
	Infrared Communication from Beacons to the Bot
	BlueTooth Communications with the Bot

	Menus
	File menu commands:
	Load INO or PDE Prog (ctrl-L)
	Edit/View (ctrl-E)
	Save (ctrl-S)
	Save As
	Next (#include) file
	Previous
	Exit

	PlayField menu commands:
	Pivot and Throw
	Seek and Score

	Find menu commands:
	Ascend Call Stack
	Descend Call Stack
	Set Search Text (ctrl-F)
	Find Next Text
	Find Previous Text

	Execute menu commands:
	Step Into (F2)
	Step Over (F4)
	Step Out Of
	Run To
	Run
	Halt
	Reset
	Animate
	Slow Motion

	Help menu commands:
	Quick Help File
	Full Help File
	Bug Fixes
	Change/Improvements
	About

	Options menu commands:
	Skip through Structors/Operators
	Register-Allocation Modelling
	Error on Uninitialized
	Artificial loop() Delay
	Auto Beacons
	Allow Nested Interrupts

	Configure menu commands:
	Wire Up PIns
	Preferences
	Wheel Speed Mismatch

	VarUpdates menu commands:
	Allow Auto (-) Collapse
	Minimal
	Highlight Changes

	Windows menu commands:
	BT Monitor
	'Uno' Pins
	Restore All
	Prompt
	Digital Waveforms
	Analog Waveform

	Timing and Sound Modelling
	Intro
	Timing
	Sounds modelling

	Limitations and Unsupported Elements
	Included Files
	Dynamic Memory allocations and RAM
	'Flash' Memory Allocations
	'String' Variables
	Arduino Libraries
	Pointers
	'class' and 'struct' Objects
	Scope
	Qualifiers 'unsigned', 'const', 'volatile', 'static'
	Compiler Directives
	Arduino-language elements
	C/C++-language elements
	Function Templates
	Real-Time Emulation

	Release Notes
	Bug Fixes
	V3.1 June 2021 – Frirst Release

	Changes/Improvements
	V3.1 – June 2021 Furst Release

